Exercise 59

A function f is a ratio of quadratic functions and has a vertical asymptote $x=4$ and just one x-intercept, $x=1$. It is known that f has a removable discontinuity at $x=-1$ and $\lim _{x \rightarrow-1} f(x)=2$. Evaluate
(a) $f(0)$
(b) $\lim _{x \rightarrow \infty} f(x)$

Solution

Construct the function f one step at a time. Since there's a vertical asymptote $x=4$, place a factor of $(x-4)$ in the denominator.

$$
\frac{1}{x-4}
$$

Since there's an x-intercept at $x=1$, that means the function is zero at $x=1$. Place a factor of $(x-1)$ in the numerator.

$$
\frac{x-1}{x-4}
$$

Since there's a removable discontinuity (a hole) at $x=-1$, place a factor of $x+1$ in the numerator and denominator.

$$
\frac{(x-1)(x+1)}{(x-4)(x+1)}
$$

Since there's a limit to be satisfied, include an arbitrary constant A in front of function.

$$
f(x)=A \frac{(x-1)(x+1)}{(x-4)(x+1)}
$$

Evaluate the limit of $f(x)$ as $x \rightarrow-1$.

$$
\begin{aligned}
2 & =\lim _{x \rightarrow-1} f(x) \\
& =\lim _{x \rightarrow-1} A \frac{(x-1)(x+1)}{(x-4)(x+1)} \\
& =A \lim _{x \rightarrow-1} \frac{x-1}{x-4} \\
& =A\left(\frac{-2}{-5}\right) \\
& =A\left(\frac{2}{5}\right)
\end{aligned}
$$

Solve for A.

$$
A\left(\frac{2}{5}\right)=2 \quad \rightarrow \quad A=5
$$

As a result, the function that satisfies all the conditions is

$$
f(x)=5 \frac{(x-1)(x+1)}{(x-4)(x+1)} .
$$

Evaluate the function at $x=0$.

$$
f(0)=5 \frac{(-1)(1)}{(-4)(1)}=5\left(\frac{1}{4}\right)=\frac{5}{4}
$$

Evaluate the limit of the function as $x \rightarrow \infty$.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} 5 \frac{(x-1)(x+1)}{(x-4)(x+1)} \\
& =5 \lim _{x \rightarrow \infty} \frac{x^{2}-1}{x^{2}-3 x-4} \\
& =5 \lim _{x \rightarrow \infty} \frac{x^{2}\left(1-\frac{1}{x^{2}}\right)}{x^{2}\left(1-\frac{3}{x}-\frac{4}{x^{2}}\right)} \\
& =5 \lim _{x \rightarrow \infty} \frac{1-\frac{1}{x^{2}}}{1-\frac{3}{x}-\frac{4}{x^{2}}} \\
& =5\left(\frac{1-0}{1-0-0}\right) \\
& =5(1) \\
& =5
\end{aligned}
$$

